
 

 
 

Serving Insights: Improving Data-Driven Badminton Analytics 
with Computer Vision and Machine Learning
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Abstract - Recent improvements in the fields of 
computer vision and machine learning have led to a 
data revolution in sports. The introduction of novel 
approaches for measuring performance and 
strategy has transformed coaching and training 
methods. However, sports like badminton are yet to 
experience this boom due to the lack of an 
accessible end-to-end solution for data collection 
and analysis. This study aims to address this need 
by developing a pipeline for extracting positional 
data and training a model to classify the shots taken 
by badminton players. 
This pipeline is developed with automation in mind, 
but falls back to human inputs where manual 
annotations produce more accurate results than 
trained models. The pipeline begins by prompting 
the user to identify the corners of the court and 
isolating the court area. Subsequently, video 
frames that do not contain the complete court view 
are filtered out through feature matching. 
Thereafter, pose estimation models are used to 
detect pose data and calculate joint angles for each 
player. This data is normalized and transformed into 
features in relation to the player's court position. 
Lastly, the processed data is used to train machine 
learning models to classify the strokes played 
during a rally.  
The data obtained from this workflow can be used 
to train advanced models and develop new metrics 
to obtain a deeper understanding of effective 
playing styles. This sets the stage for a significant 
transformation in badminton research and training. 
It will also provide a roadmap for exploring other 
racquet sports like tennis and squash. 

Keywords – Sports Science, Machine 
Learning, Computer Vision 

1 INTRODUCTION 
Data-driven analytics has the potential to serve as 
the new foundation for a robust and explainable 
measure of performance in sports. The field of 
sports science has been transformed by an 
“analytics boom” that has revolutionized coaching, 
analysis and preparation. This is due to two key 
factors: 
Improvements in Data Collection – The rapid 
development and widespread accessibility of new 
tools for data collection has provided sports 
scientists with new data sources for analysis.  For 
example, GPS sports vests, which have become a 
popular tool to track football player’s performance 

during matches and training, contain sensors that 
are able to provide “660 raw data points per second” 
[1].  
Increasing Model Complexity – Improvements in 
the accessibility of machine learning techniques 
have significantly lowered the barrier to entry for 
training complex models. This, along with the 
substantial increase in the quantity and quality of 
training data, has resulted in the rapid development 
of new models and metrics in different sports. 
However, not every sport has been able to 
experience an “analytics boom”. This can primarily 
be attributed to the inequality in the accessibility of 
this data. Data collection processes can be 
expensive if third-party services are hired, and time-
consuming if teams or players choose to collect it 
on their own. 
To address this problem and make data-driven 
insights accessible to badminton players of all 
levels, we propose constructing a pipeline for data 
collection that automates the process of data 
collection and processing from videos of badminton 
matches.  

2 DATA PROCESSING PIPELINE 
The pipeline is currently designed to accept videos 
of men’s singles badminton matches from the user, 
and produces the following outputs: 

1. Location of players on the court 
2. Joint angles of players  
3. Joint distances of players  
4. Type of shot taken by each player during a 

match 
This section details the processing steps that are 
taken to derive the desired outputs from the input 
match video.  

2.1  VIDEO PRE-PROCESSING 
In the proposed pipeline, we assume that the first 
frame of the input video contains a full view of the 
badminton court. This condition was enforced to 
simplify the process of isolating the court area. 
Given the development time constraints of this 
project, the decision was made to simplify the initial 
stages of data extraction to reduce computational 
overhead while creating a standard input format. 
2.1.1 Isolating Court Area 
Isolating the court area is an essential step for 
removing noise from the input video. The primary 



 

 
 

source of noise in recordings of badminton matches 
comes from persons standing outside the court 
area, such as umpires and line judges. This affects 
the accuracy of downstream pose estimation tasks, 
which are essential to the output of our data 
pipeline. 

Using the OpenCV Python package [2], the first 
frame of the video is displayed to the user. Fig. 1 
shows a sample of the output displayed to the user 
during this stage.  

 
Figure 1 First Frame of the Video Displayed to the 

User 

The user is then prompted to select the four corners 
of the court in the following order: bottom left, top 
left, top right, bottom right. Once the user has 
selected the corners of the court, the program 
slightly extends the corner points by a percentage 
of the video’s dimensions to ensure that no 
important information is lost during the masking 
process. The original coordinates selected by the 
user are also saved for future use. 

Using OpenCV, a black mask of the same size as 
the frame is created, and a white polygon is created 
using the extended court coordinate points. The 
resulting bitwise AND operation isolates the court 
area while excluding the pixels in the rest of the 
frame. This mask is subsequently applied to the rest 
of the video. Fig. 2 shows a sample of the output 
from this masking step. Comparing Fig.1 and Fig.2, 
we can see that the noise from the umpires and 
linesmen have been removed, resulting in greater 
accuracy in downstream analysis tasks.  

 
Figure 2 First Frame of the Video after Masking 

 

2.1.2 Filtering Frames with Feature Masking 
Videos of broadcasted tournament matches may 
contain segments that are not relevant for the task 
of match analysis, such as replays and close-ups. 
As such, an automated solution is needed to 
eliminate gameplay interruptions and discard 
frames that do not contain the full court view. 

To achieve this, we use the feature detector and 
feature matching functionalities provided by the 
OpenCV Python package. Using the ORB (Oriented 
FAST and Rotated BRIEF) feature detector, 3000 
keypoints and descriptors are detected and 
computed in each frame of the input video. These 
detected features are subsequently matched with a 
reference frame that contains the full court view 
using a BFMatcher (Brute-Force Matcher). Frames 
with more than 1250 valid matches of detected 
features are retained for the final output video. Fig. 
3 illustrates an example of feature matching 
between two frames in a video. The lines between 
the frames on the left and right connect matched 
features between the two frames. 

 
Figure 3 Output of Feature Matching between Two 

Valid Frames 

If the frame does not contain at least 1250 valid 
matches, transformations are applied to make the 
frame appear greyed and blurred. This effect was 
chosen to prevent the poses of the players from 
being detected during replays, while allowing users 
to discern what is happening in these frames. Fig. 4 
showcases an example of a frame with the effects 
applied.  

 
Figure 4 Example of Discarded Frame after 

Feature Matching 

After these pre-processing steps, the videos are 
ready to be used as input for detecting the poses of 
the badminton players.  

2.3 POSE ESTIMATION 
2.3.1 Pose Estimation Model 



 

 
 

OpenPose [3] was selected as the model of choice 
for the pose estimation task due to its state-of-the-
art performance and capabilities in multi-person 
pose estimation. The versatility, reliability and 
active community support offered by OpenPose 
made it an ideal candidate for the backbone of our 
data pipeline. 

The OpenPose model was integrated with the 
Sports2D Python package [4]. Designed for 
analysing 2D sports footage, the package abstracts 
the model inference process and can directly 
generate the pose estimation data needed for our 
pipeline. Fig.5 highlights an example frame with the 
inferred locations of the badminton players’ pose 
keypoints. The coordinates of the following 
keypoints are provided for every detected keypoint 
in the frame are listed in Table 1. 

Table 1 Detected OpenPose Keypoints  

Body 
Part 

Keypoints 

Head Nose, REye, LEye, REar, LEar, 
Neck 

Shoulders RShoulder, LShoulder 

Elbows RElbow, LElbow 

Wrists RWrist, LWrist 

Hips CHip, RHip, LHip 

Knees RKnee, LKnee 

Ankles RAnkle, LAnkle 

Feet RBigToe, LBigToe, RSmallToe, 
LSmallToe, RHeel, LHeel 

 

 
Figure 5 Example of Annotated Frame after 

Inference with Sports2D and OpenPose 

The Sports2D package further provides a 
functionality to track the coordinates of a detected 
player across frames. The package outputs a series 
of CSV files containing the movements of each 
tracked player across the duration of the video. The 
files contain the x and y coordinates and the 
likelihood of accuracy for the detected keypoints 
listed in Table 1.  

2.3.2 Pose Estimation Post Processing 
2.3.2.1 Perspective Transformation 
The output coordinates of pose detection models 
are provided with reference to the input video 
resolution. Therefore, it is necessary to obtain the 
location of the badminton players with respect to the 
court to be able to compare readings across 
different videos.  

Using the court coordinates obtained in Section 
2.1.1, a homography matrix is calculated via 
OpenCV’s getPerspectiveTransform function. This 
returns a 3x3 transformation matrix that can be 
used to map points from the image plane of a 
camera to the plane of a badminton court. The 
location of the court corners obtained via the user 
are mapped to the points listed in Table 2 below. 

Table 2 Coordinates of Badminton Court Corners 
in Reference Plane 

Corner Coordinate 
Bottom Left  (0, 1340) 

Top Left  (0,0) 

Bottom Right  (610,0) 

Top Right  (610,1340) 

The homography matrix is applied to the output 
coordinates from the Sports2D package to obtain 
the location of the player with respect to the 
badminton court.  

2.3.2.2 Sports2D Output Segregation 
While Sports2D provides a player tracking 
functionality, instances of ‘swapping’ IDs between 
players were observed during testing. This can be 
observed in Fig. 6 and Fig.7. The bottom player was 
assigned an ID of 4 in Fig.6, but in a subsequent 
frame in Fig. 7, was assigned an ID of 3. 

 
Figure 6 Example of Player ID Swapping – Initial 

Assignment 



 

 
 

 
Figure 7 Example of Player ID Swapping – 

Subsequent Assignment 

Therefore, further post-processing is required to 
assign the correct set of coordinates to the players 
located in the top and bottom half of the badminton 
court. This ensures that the output data is accurate 
and does not contain unnecessary information such 
as the poses of line judges or ballboys, which are 
often also detected in the footage.  

We begin by identifying and extracting frames that 
have been filtered using the methodology in Section 
2.1.2. These frames are characterized by a low 
likelihood of detection for key body parts such as 
hips, knees, ankles and heels, and negative y 
coordinates after transformation. These frames are 
still represented in our final output to maintain the 
integrity of the dataset. 

Next, for each tracked player output by Sports2D, 
pose coordinates are filtered based on if they 
belong to the top or the bottom half of the court. This 
is achieved using the court coordinates in the 
reference plane defined in Table 2. 

The final output from this step is segregated CSVs 
for top and bottom half coordinates for each player 
ID tracked by Sports2D. From this, we can 
reconstruct the final movements made by the top 
and bottom player. 

2.3.2.2 Assigning Coordinates to Top and 
Bottom Players 
Finally, the data from the segregated top and 
bottom halves is used to generate the coordinates 
of the top and bottom players of the match. The 
CSVs from Section 2.3.2.1 are merged and sorted 
in ascending order by frame number and the y 
coordinate of the detected right ankle. This joint was 
chosen as it is the closest marker to the badminton 
court plane and hence has the lowest error during 
perspective transformation. Since the coordinate 
origin in OpenCV is the bottom left of the video, we 
assume that the top player will have a larger right 
ankle y axis value as they occupy the highest most 
valid location on the transformed badminton court. 

 

 

2.3.2.3 Pose Data Filtering 
Tracked pose data can contain noise due to 
inaccuracies in detections. Therefore, there is a 
need to perform data smoothing to reduce 
distortions while preserving the shape and features 
of the original data.   

The Savitzky-Golay Filter was chosen for this task 
due to its ability to reduce noise and preserve data 
features with its sliding window approach. When 
applied to the pose coordinates, the filter performs 
the following steps: 

1. Read the data points within the specified 
window length. 

2. Fit a polynomial to these points using the 
defined polynormal order. 

3. Replace the central point in the window 
with the point of the polynomial. 

4. Repeat steps 1-3 until the entire series has 
been processed.  

However, before filtering the data, it is necessary to 
re-calculate the position of the players with respect 
to the original dimensions of the video. This is to 
eliminate errors that may arise from the 
homography transformation process. 

Therefore, an inverse perspective transform is 
calculated using the homography matrix derived in 
Section 2.3.2.1. After the original coordinates for 
the top and bottom player are obtained, the data is 
filtered using an implementation of the Savitzky-
Golay Filter in the SciPy Python package [5]. The 
input parameters are as follows: 

1. Window Length – half of the input video’s 
FPS (frame per second)  

2. Polynomial Order – 1  

The final output from this step is the filtered pose 
data for the top and bottom player with respect to 
the original coordinates of the input video. From 
this, we can proceed to calculate input features for 
the shot classification models. 

2.3.2.4 Feature Calculations 
Given the coordinates of the detected joints of the 
players, it is possible to calculate some additional 
features that can be used to provide more user-
friendly output and serve as a more powerful input 
for shot classification models.  

Joint Angles 
The coordinates of detected joints are represented 
as 2D vectors. Therefore, to calculate the angle 
between joints, the dot product formula must be 
used, as shown in Fig. 8. 



 

 
 

 
Figure 8 – Dot Product Formula 

This calculation is performed for all combinations of 
detected joints. The final angle reported is the 
minimum of the two combinations. Additionally, for 
the ball and socket joints (shoulders and hips), the 
abduction and horizontal abduction angles are 
calculated. The abduction angle refers to the 
shoulder angle between the elbow and the hip, 
while the horizontal abduction angle refers to the 
angle between the elbow and the opposite 
shoulder.  

Euclidian Distances 
Using the formula in Fig.9, the Euclidian Distances 
between detected joints can be determined.  

 
Figure 9 – Euclidian Distance Formula 

However, variations in camera configuration can 
result in a distortion of the raw distances between 
joints. To account for these, min-max normalization 
is carried out to standardize the distances between 
joints in each frame to a range of 0 to 1. This 
mitigates the effect of variations in camera setups. 
The normalized value is derived using the formula 
in Fig. 10.  

 
Figure 10 – Min-Max Normalization Formula 

This ensures that all distances are within the same 
range, allowing for the comparison of data points 
across frames. However, a drawback of this 
approach is that it compresses the values into a 
square "box," which can distort the shape of the 
detected pose, leading to the loss of information. 
Fig. 11 depicts a side-by-side comparison of the 
original video frame and the distorted image after 
normalization. 

 
Figure 11 – Before-and-After Comparison of Min-

Max Normalization 

To address this distortion, it is necessary to use 
another normalization approach that considers the 
aspect ratio of the input video. The aspect ratio is 
defined as the ratio of the width to the height of the 
input frame. Multiplying the x-axis coordinates by 
the aspect ratio before normalization ensures that 
the proportional relationship between width and 
height is maintained. This step is crucial because it 
aligns the x-coordinates with the scale of the y-
coordinates, preserving the true geometric shape of 
the player's pose. The outputs from this stage are 
CSV files for the bottom and top players, containing 
the following information for all keypoints listed in 
Table 1: 

1. Detected x and y coordinates. 

2. Likelihood of detection. 

3. Coordinates of the centre of mass of 
players. 

4. Joint angles of keypoints. 

5. Normalized distances between from each 
keypoint to the other keypoints. 

For the purposes of model training, a truncated 
version of this dataset is created and saved. As 
different input videos can contain different camera 
angles, some data points obtained from our pipeline 
are prone to higher deviations. To prevent our 
classification models from learning incorrect 
information, we chose to retain features that are 
resistant to these deviations. Therefore, only the 
calculated angles and normalized aspect ratio 
distance are used training our shot classification 
models. 

3 SHOT CLASSIFICATION MODELS 
To achieve the task of automatically classifying the 
type of shot taken by a player, it is necessary to train 
a classification model that takes in a sequence of 
frames just before and after a player hits a 
shuttlecock. It is also necessary to construct a 
training dataset consisting of different shots taken 
by a player and their movements as recorded by our 
pipeline, as detailed in Section 2. This section aims 



 

 
 

to elaborate on our training data collection process, 
model training methodology and explain our 
findings. 

3.1  TRAINING DATASET 
To construct our training dataset, badminton match 
videos were sourced from YouTube, ensuring a 
diverse range of gameplay scenarios and player 
actions (IRB-2023-442). These videos were then 
downloaded and systematically processed using 
the data processing pipeline detailed in Section 2. 
After extracting the positional data, manual 
annotation of videos was performed to mark the 
frames during which player actions were carried 
out. To streamline the annotation process, we 
utilized the Computer Vision Annotation Tool 
(CVAT) [6]. Currently, the data from six quarter-
final, semi-final and final matches of the YONEX 
French Open 2023 have been processed and 
annotated. However, this annotation process is still 
ongoing as we look to construct an extensive 
training data set consisting of a diverse range of 
camera angles and players.  
3.1.1  Annotation Tags  
Table 3 lists the annotation tags that are grouped 
by category.  

Table 3 Annotation Tags Grouped by Category 

Category Values 

Player Top Player, Bottom Player 

Grip Forehand, Backhand, Overhead 

Shot 
Type 

Lob, Drop, Smash, Drive, Block, Net, 
Lift, Tap, Push, Serve Low, Serve 
High 

Shot 
Direction 

Straight, Middle, Cross 

Outcome Winner, Forced Error, Unforced 
Error 

 
For every shot taken in the input video, the 
corresponding frame is marked, and the following 
tags applied: 

1. Player – to identify if the top or bottom 
player played the shot 

2. Grip – to identify the type of grip used 
during the shot 

3. Shot Type – 
a. Lob – refers to a shot played from the 

player’s back court to the opponent’s 
back court. 

b. Drop – refers to a shot played from the 
player’s back court to the opponent’s 
front court, low and close to the net. 

c. Smash – refers to a shot that is mostly 
played from the player’s back court in a 
fast, attacking manner. 

d. Drive – refers to a flat shot that can be 
played from the player’s mid-court or 
backcourt. It can be a straight shot, 
cross-court shot, or even to the body of 
the opponent. 

e. Block – refers to a shot mostly played 
when receiving a smash from the 
opponent. 

f. Net – refers to a shot played from the 
player’s front court to the opponent’s 
front court, near the net. 

g. Lift – refers to a shot played from the 
player’s front court to the opponent’s 
back court, high in the air. 

h. Tap – refers to an attacking shot played 
at the player’s front court. 

i. Push – refers to a flat lift shot played 
from the front of the player’s court to the 
middle or back court of the opponent. 

j. Serve Low – refers to the shot played 
by the player at the beginning of a 
possession, from the player’s front 
court to the opponent’s front court 

k. Serve High – refers to the shot played 
by the player at the beginning of a 
possession, from the player’s front 
court to the opponent’s back court 

4. Shot Direction –  
a. Straight – If the shuttle does not cross 

the middle line when moving from the 
player’s court to the opponent’s court, it 
is considered a straight shot. 

b. Middle – If the shuttle goes toward the 
center zone of the court, it is 
considered a middle shot. 

c. Cross – When the shuttle crosses the 
vertical middle line of the court, it is 
considered a cross shot. 

At the beginning of a sequence, the player playing 
the serve and the type of serve is marked. At the 
end of a sequence, one of the following tags is 
applied: 

1. Winner – When the opponent misses the 
shuttle, or the shuttle touches the ground 
before the opponent has a chance to play 
it. 

2. Forced Error – A point lost by the 
opponent as a direct result of a well-
executed or strategically placed shot, which 
compels the opponent into making a 
mistake, such as hitting the shuttle into the 
net or out of bounds. 



 

 
 

3. Unforced Error – A point lost due to the 
player's own mistake, typically occurring in 
the absence of significant pressure from 
the opponent. 

After the annotation process has been completed 
for a match, the tags are merged into the complete 
and truncated datasets generated from our data 
collection pipeline. Additionally, a ‘padding’ size of 
frames half the frame rate of input video is applied 
for the frames before and after the shot was taken. 
In the context of this training dataset, the training 
videos were 30 frames per second (FPS) and thus 
12 frames were padded. For example, if a serve 
was taken at the 100th frame of a video, the 
sequence from frames from frame 88 to 112 are 
marked as a serve. This allows us to easily obtain 
and process the movements made by the player 
before and after the shot was taken. This data is 
stored in CSV files and serves as the input data for 
the shot classification models. 

3.2 MODEL TRAINING  
3.2.1 Data Loading 
The CSV files from the data annotation process are 
loaded and processed using the Pandas Python 
package [7]. The following is the data loading 
methodology: 

1. Remove rows containing values of -999. 
These are used to mark frames that have 
been filtered with feature masking. 

2. Extract the columns containing pose angles 
and normalized distances. 

3. Using the Pandas package, mark the row 
numbers containing the shot types for 
classification. 

4. Group consecutive frames corresponding 
to each shot type as a sequence.  

5. Track the maximum sequence length 
across all files and apply padding if 
necessary to ensure a uniform input to the 
model. 

6. Map the shot types for classification to 
integer values. 

Data loading and model training is handled by the 
PyTorch Python package [8]. A custom class is 
implemented to facilitate data loading and to 
enable batch processing.  
3.2.1 Grip Classification Model Training 
To reduce the complexity of the initial exploration of 
the model training methodology, we chose to focus 
on an annotation category that contains a fewer 
number of classes. The “Grip” category from Table 
3 meets this criterion and hence Forehand (FH), 

Backhand (BH), and Overhead (OH) were used as 
the target labels for shot classification.  

3.2.1.1  Model Architectures  
The performance of three different model 
architectures were tested:  

1. Recurrent Neural Networks (RNNs),  

2. Long Short-Term Memory networks 
(LSTMs), and  

3. Convolutional Neural Networks (Conv2D) 

These model architectures were chosen due to their 
capabilities in handling sequential and spatial data. 
RNNs excel at capturing temporal dependencies 
within sequential data, making them suitable for 
analysing the frame-by-frame progression of player 
movements. LSTMs were selected as they are 
better able to capture long-term dependencies in 
temporal data. Lastly, Conv2Ds were selected due 
to the model architecture’s strengths in spatial 
feature extraction. By comparing these 
architectures, we aim to determine which model 
best balances the temporal and spatial aspects of 
the input data, providing the most accurate shot 
classification. 

3.2.1.2 Model Training Parameters 
The following parameters were constant across the 
training of the three models: 

1. Number of Epochs – 10 

2. Learning Rate – 0.001 

3. Train / Test Split – 60:40 

4. Loss Function – Cross Entropy Loss 

5. Optimizer – Adam Optimizer 

For each architecture, three models were trained: 

1. Model using the Top Player Data 

2. Model using the Bottom Player Data 

3. Model using the Combined Dataset 

This decision was made to evaluate if segregating 
the dataset for the top and bottom player provides 
better results. The following section details the and 
statistical measures calculated for the test set of 
each model architecture. 

3.2.1.2.1 Model Results 
Bottom Player Data 

Table 4 F1 Score for Models on Bottom Player 
Test Data Set  

F1 Score RNN LSTM Conv2D 

Class    

FH 0.689 0.831 0.940 



 

 
 

OH 0.739 0.862 0.954 

BH 0.834 0.933 0.948 

Table 5 Precision Scores for Models on Bottom 
Player Test Data Set  

Precision RNN LSTM Conv2D 

Class     

FH 0.717 0.835 0.946 

OH 0.734 0.857 0.957 

BH 0.752 0.933 0.922 

Table 6 Recall Scores for Models on Bottom 
Player Test Data Set  

Recall RNN LSTM Conv2D 

Class    

FH 0.664 0.826 0.933 

OH 0.744 0.866 0.951 

BH 0.936 0.933 0.975 

Top Player Data 
Table 8 F1 Score for Models on Top Player Test 

Data Set  

F1 Score RNN LSTM Conv2D 

Class    

FH 0.788 0.889 0.900 
OH 0.653 0.889 0.881 

BH 0.810 0.893 0.902 
Table 9 Precision Scores for Models on Top 

Player Test Data Set  

Precision RNN LSTM Conv2D 

Class     

FH 0.885 0.908 0.947 
OH 0.538 0.856 0.810 

BH 0.873 0.832 0.948 
Table 10 Recall Scores for Models on Top Player 

Test Data Set  

Recall RNN LSTM Conv2D 

Class    

FH 0.710 0.871 0.857 

OH 0.833 0.925 0.965 
BH 0.756 0.858 0.860 

Combined Player Data 
Table 11 F1 Scores for Models on Combined 

Player Test Data Set  

F1 Score RNN LSTM Conv2D 

Class    

FH 0.708 0.809 0.915 
OH 0.767 0.767 0.932 
BH 0.877 0.900 0.934 

Table 12 Precision Scores for Models on 
Combined Player Test Data Set  

Precision RNN LSTM Conv2D 

Class     

FH 0.590 0.933 0.867 

OH 0.822 0.659 0.982 
BH 0.831 0.850 0.940 
Table 13 Recall Scores for Models on Combined 

Player Test Data Set  

Recall RNN LSTM Conv2D 

Class    

FH 0.884 0.715 0.968 
OH 0.656 0.917 0.887 

BH 0.928 0.957 0.928 

 

3.2.1.3 Observations 
Tables 4-13 reveal several insights into model 
performance on the shot classification task.  

Across bottom, top, and combined player data, the 
Conv2D model consistently yields the highest F1 
scores, with particularly strong performance on FH 
and OH shots. For instance, on the bottom player 
dataset, Conv2D achieves F1 scores of 0.94 on FH, 
0.954 on OH, and 0.948 on BH, significantly 
outperforming both RNN and LSTM. This suggests 
that Conv2D is more effective at capturing the 
spatiotemporal patterns inherent in the sequence 
data, possibly due to its ability to preserve and learn 
local spatial features within the input frames. We 
therefore recommend adopting this model 
architecture for subsequent studies. 

Additionally, all three model architectures were 
effective in accurately classifying OH shots. For 
example, on the combined dataset, even the RNN, 
which performs worst overall, achieves a relatively 
high OH F1 score of 0.767. This suggests that OH 
shots exhibit distinctive pose features that are 
easier for models to learn, while FH and BH share 
overlapping kinematic signatures that lead to 
greater misclassification.  

There is also a notable difference in performance 
between separate models for top and bottom 
players against a combined model. While the 



 

 
 

Conv2D model maintained high accuracy even in 
the combined setting, the RNN and LSTM 
architectures generally experienced performance 
degradation when trained on the merged dataset. 
This trend indicates that the positional context of the 
player introduces variability in pose sequences, 
which can hinder model generalization. By training 
separate models for each player position, this 
variability is minimized, allowing the models to 
focus more effectively on learning position-
dependent shot patterns. 

4 FUTURE DIRECTIONS 
This study has identified several avenues for future 
research and improvements to our current pipeline.  

4.1 AUTOMATED COURT CORNER 
DETECTION 
Currently, user interaction is needed to identify the 
court corners during the initial data processing 
steps. This design choice was made due to the time 
constraints of this study. However, this can be 
burdensome for users who wish to process multiple 
videos. Therefore, future iterations of this pipeline 
can develop and implement keypoint detection 
models that automatically detect the location of 
court features.  

Dynamic detection of court features can also enable 
frame-wise calculation of homography matrices. 
This is valuable in scenarios where the broadcast 
camera is panning between different parts of the 
court. By continuously updating the homography 
matrix to maintain a consistent top-down or 
standardized court view, the system can perform 
player tracking and spatial localization across 
varying perspectives. This significantly improves 
the robustness, scalability, and automation level of 
the video analysis pipeline, particularly for use in 
live match analysis or large-scale datasets with 
non-static cameras.  

4.2 TRAINING SHOT CLASSIFICATION 
MODELS 
The results from our grip classification models show 
that the Conv2D architecture performs extremely 
well for action recognition on our input dataset. 
Future development of this pipeline should hence 
focus on training similar classification models for 
the other tags in Table 3, along with exploring 
methodologies to improve the performance of 
existing models. 

4.3 SHUTTLECOCK TRACKING 
We propose the implementation of TrackNetV3 [9] 
to enhance the precision of shot detection in 
badminton matches. TrackNetV3 offers the 
capability to track the location of a shuttlecock in a 
video. From this, we can determine the trajectory 
and velocity of the shuttlecock throughout a game. 
Furthermore, by analyzing the changes in 
shuttlecock velocity, we can obtain the exact frame 
when a shot is taken. This in turn enables us to use 
our trained shot classification models to infer the 
type of shot taken by a player. Although the current 
project timeline did not allow for the exploration and 
implementation of TrackNetV3, it represents a 
promising direction for future research to refine and 
enhance the shot detection and classification 
process in badminton video analysis.  

5 CONCLUSION 
In summary, this work lays the groundwork for a 
scalable, intelligent badminton video analysis 
system. The project began with the creation of a 
data-processing pipeline. This included video pre-
processing, isolating the court area, filtering frames 
using masking techniques, and using advanced 
pose detection models. Post-processing steps 
involved perspective transformation, segregation of 
outputs, assignment of coordinates to players, and 
feature calculations. 

During the training of the grip classification model, 
we collated and annotated a training dataset and 
explored the performance of various model 
architectures on three different datasets. Our 
findings indicate that the Conv2D model 
architecture outperform LSTM and RNN, and 
training separate models for top and bottom players 
significantly reduces classification errors. 

Building on these insights, we propose several 
avenues for future improvement. Automating the 
court corner detection step using keypoint-based 
models can enhance the usability and scalability of 
the system. Additionally, expanding the 
classification pipeline to support other shot 
attributes would significantly broaden the system’s 
analytical capabilities. Finally, incorporating 
shuttlecock tracking using TrackNetV3 will provide 
additional data points to improve the quality of 
results. 
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