Serving Insights: Improving Data-Driven Badminton Analytics
with Computer Vision and Machine Learning

Word Count - 5166

Abstract - Recent improvements in the fields of
computer vision and machine learning have led to a
data revolution in sports. The introduction of novel
approaches for measuring performance and
strategy has transformed coaching and training
methods. However, sports like badminton are yet to
experience this boom due to the lack of an
accessible end-to-end solution for data collection
and analysis. This study aims to address this need
by developing a pipeline for extracting positional
data and training a model to classify the shots taken
by badminton players.

This pipeline is developed with automation in mind,
but falls back to human inputs where manual
annotations produce more accurate results than
trained models. The pipeline begins by prompting
the user to identify the corners of the court and
isolating the court area. Subsequently, video
frames that do not contain the complete court view
are filtered out through feature matching.
Thereafter, pose estimation models are used to
detect pose data and calculate joint angles for each
player. This data is normalized and transformed into
features in relation to the player's court position.
Lastly, the processed data is used to train machine
learning models to classify the strokes played
during a rally.

The data obtained from this workflow can be used
to train advanced models and develop new metrics
to obtain a deeper understanding of effective
playing styles. This sets the stage for a significant
transformation in badminton research and training.
It will also provide a roadmap for exploring other
racquet sports like tennis and squash.

Keywords - Sports Science, Machine
Learning, Computer Vision

1 INTRODUCTION

Data-driven analytics has the potential to serve as
the new foundation for a robust and explainable
measure of performance in sports. The field of
sports science has been transformed by an
“analytics boom” that has revolutionized coaching,
analysis and preparation. This is due to two key
factors:

Improvements in Data Collection — The rapid
development and widespread accessibility of new
tools for data collection has provided sports
scientists with new data sources for analysis. For
example, GPS sports vests, which have become a
popular tool to track football player's performance

during matches and training, contain sensors that
are able to provide “660 raw data points per second”

[1].

Increasing Model Complexity — Improvements in
the accessibility of machine learning techniques
have significantly lowered the barrier to entry for
training complex models. This, along with the
substantial increase in the quantity and quality of
training data, has resulted in the rapid development
of new models and metrics in different sports.

However, not every sport has been able to
experience an “analytics boom”. This can primarily
be attributed to the inequality in the accessibility of
this data. Data collection processes can be
expensive if third-party services are hired, and time-
consuming if teams or players choose to collect it
on their own.

To address this problem and make data-driven
insights accessible to badminton players of all
levels, we propose constructing a pipeline for data
collection that automates the process of data
collection and processing from videos of badminton
matches.

2 DATA PROCESSING PIPELINE

The pipeline is currently designed to accept videos
of men’s singles badminton matches from the user,
and produces the following outputs:

1. Location of players on the court
2. Joint angles of players

3. Joint distances of players
4

Type of shot taken by each player during a
match

This section details the processing steps that are
taken to derive the desired outputs from the input
match video.

2.1 VIDEO PRE-PROCESSING

In the proposed pipeline, we assume that the first
frame of the input video contains a full view of the
badminton court. This condition was enforced to
simplify the process of isolating the court area.
Given the development time constraints of this
project, the decision was made to simplify the initial
stages of data extraction to reduce computational
overhead while creating a standard input format.

2.1.1 Isolating Court Area

Isolating the court area is an essential step for
removing noise from the input video. The primary

source of noise in recordings of badminton matches
comes from persons standing outside the court
area, such as umpires and line judges. This affects
the accuracy of downstream pose estimation tasks,
which are essential to the output of our data
pipeline.

Using the OpenCV Python package [2], the first
frame of the video is displayed to the user. Fig. 1
shows a sample of the output displayed to the user
during this stage.

Figure 1 First Frame of the Video Displayed to the
User

The user is then prompted to select the four corners
of the court in the following order: bottom left, top
left, top right, bottom right. Once the user has
selected the corners of the court, the program
slightly extends the corner points by a percentage
of the video’s dimensions to ensure that no
important information is lost during the masking
process. The original coordinates selected by the
user are also saved for future use.

Using OpenCV, a black mask of the same size as
the frame is created, and a white polygon is created
using the extended court coordinate points. The
resulting bitwise AND operation isolates the court
area while excluding the pixels in the rest of the
frame. This mask is subsequently applied to the rest
of the video. Fig. 2 shows a sample of the output
from this masking step. Comparing Fig.1 and Fig.2,
we can see that the noise from the umpires and
linesmen have been removed, resulting in greater
accuracy in downstream analysis tasks.

Figure 2 First Frame of the Video after Masking

2.1.2 Filtering Frames with Feature Masking

Videos of broadcasted tournament matches may
contain segments that are not relevant for the task
of match analysis, such as replays and close-ups.
As such, an automated solution is needed to
eliminate gameplay interruptions and discard
frames that do not contain the full court view.

To achieve this, we use the feature detector and
feature matching functionalities provided by the
OpenCV Python package. Using the ORB (Oriented
FAST and Rotated BRIEF) feature detector, 3000
keypoints and descriptors are detected and
computed in each frame of the input video. These
detected features are subsequently matched with a
reference frame that contains the full court view
using a BFMatcher (Brute-Force Matcher). Frames
with more than 1250 valid matches of detected
features are retained for the final output video. Fig.
3 illustrates an example of feature matching
between two frames in a video. The lines between
the frames on the left and right connect matched
features between the two frames.

Figure 3 Output of Feature Matching between Two
Valid Frames

If the frame does not contain at least 1250 valid
matches, transformations are applied to make the
frame appear greyed and blurred. This effect was
chosen to prevent the poses of the players from
being detected during replays, while allowing users
to discern what is happening in these frames. Fig. 4
showcases an example of a frame with the effects
applied.

Figure 4 Example of Discarded Frame after
Feature Matching

After these pre-processing steps, the videos are
ready to be used as input for detecting the poses of
the badminton players.

2.3 POSE ESTIMATION

2.3.1 Pose Estimation Model

OpenPose [3] was selected as the model of choice
for the pose estimation task due to its state-of-the-
art performance and capabilities in multi-person
pose estimation. The versatility, reliability and
active community support offered by OpenPose
made it an ideal candidate for the backbone of our
data pipeline.

The OpenPose model was integrated with the
Sports2D Python package [4]. Designed for
analysing 2D sports footage, the package abstracts
the model inference process and can directly
generate the pose estimation data needed for our
pipeline. Fig.5 highlights an example frame with the
inferred locations of the badminton players’ pose
keypoints. The coordinates of the following
keypoints are provided for every detected keypoint
in the frame are listed in Table 1.

Table 1 Detected OpenPose Keypoints

Body Keypoints
Part
Head Nose, REye, LEye, REar, LEar,
Neck

Shoulders | RShoulder, LShoulder
Elbows RElbow, LEIbow

Wrists RWrist, LWrist

Hips CHip, RHip, LHip

Knees RKnee, LKnee

Ankles RAnkle, LAnkle

Feet RBigToe, LBigToe, RSmallToe,

LSmallToe, RHeel, LHeel

AN

¥ YOWEX

Figure 5 Example of Annotated Frame after
Inference with Sports2D and OpenPose

The Sports2D package further provides a
functionality to track the coordinates of a detected
player across frames. The package outputs a series
of CSV files containing the movements of each
tracked player across the duration of the video. The
files contain the x and y coordinates and the
likelihood of accuracy for the detected keypoints
listed in Table 1.

2.3.2 Pose Estimation Post Processing
2.3.2.1 Perspective Transformation

The output coordinates of pose detection models
are provided with reference to the input video
resolution. Therefore, it is necessary to obtain the
location of the badminton players with respect to the
court to be able to compare readings across
different videos.

Using the court coordinates obtained in Section
2.1.1, a homography matrix is calculated via
OpenCV’s getPerspectiveTransform function. This
returns a 3x3 transformation matrix that can be
used to map points from the image plane of a
camera to the plane of a badminton court. The
location of the court corners obtained via the user
are mapped to the points listed in Table 2 below.

Table 2 Coordinates of Badminton Court Corners
in Reference Plane

Corner Coordinate
Bottom Left (0, 1340)
Top Left (0,0)
Bottom Right (610,0)
Top Right (610,1340)

The homography matrix is applied to the output
coordinates from the Sports2D package to obtain
the location of the player with respect to the
badminton court.

2.3.2.2 Sports2D Output Segregation

While Sports2D provides a player tracking
functionality, instances of ‘swapping’ IDs between
players were observed during testing. This can be
observed in Fig. 6 and Fig.7. The bottom player was
assigned an ID of 4 in Fig.6, but in a subsequent
frame in Fig. 7, was assigned an ID of 3.

| Frome: 49583]

Figure 6 Example of Player ID Swapping — Initial
Assignment

& | 51
)
JOT YONEX. . JTYONEX... \|/) FFB30

Figure 7 Example of Player ID Swapping —
Subsequent Assignment

Therefore, further post-processing is required to
assign the correct set of coordinates to the players
located in the top and bottom half of the badminton
court. This ensures that the output data is accurate
and does not contain unnecessary information such
as the poses of line judges or ballboys, which are
often also detected in the footage.

We begin by identifying and extracting frames that
have been filtered using the methodology in Section
2.1.2. These frames are characterized by a low
likelihood of detection for key body parts such as
hips, knees, ankles and heels, and negative y
coordinates after transformation. These frames are
still represented in our final output to maintain the
integrity of the dataset.

Next, for each tracked player output by Sports2D,
pose coordinates are filtered based on if they
belong to the top or the bottom half of the court. This
is achieved using the court coordinates in the
reference plane defined in Table 2.

The final output from this step is segregated CSVs
for top and bottom half coordinates for each player
ID tracked by Sports2D. From this, we can
reconstruct the final movements made by the top
and bottom player.

2.3.2.2 Assigning Coordinates to Top and
Bottom Players

Finally, the data from the segregated top and
bottom halves is used to generate the coordinates
of the top and bottom players of the match. The
CSVs from Section 2.3.2.1 are merged and sorted
in ascending order by frame number and the y
coordinate of the detected right ankle. This joint was
chosen as it is the closest marker to the badminton
court plane and hence has the lowest error during
perspective transformation. Since the coordinate
origin in OpenCYV is the bottom left of the video, we
assume that the top player will have a larger right
ankle y axis value as they occupy the highest most
valid location on the transformed badminton court.

2.3.2.3 Pose Data Filtering

Tracked pose data can contain noise due to
inaccuracies in detections. Therefore, there is a
need to perform data smoothing to reduce
distortions while preserving the shape and features
of the original data.

The Savitzky-Golay Filter was chosen for this task
due to its ability to reduce noise and preserve data
features with its sliding window approach. When
applied to the pose coordinates, the filter performs
the following steps:

1. Read the data points within the specified
window length.

2. Fit a polynomial to these points using the
defined polynormal order.

3. Replace the central point in the window
with the point of the polynomial.

4. Repeat steps 1-3 until the entire series has
been processed.

However, before filtering the data, it is necessary to
re-calculate the position of the players with respect
to the original dimensions of the video. This is to
eliminate errors that may arise from the
homography transformation process.

Therefore, an inverse perspective transform is
calculated using the homography matrix derived in
Section 2.3.2.1. After the original coordinates for
the top and bottom player are obtained, the data is
filtered using an implementation of the Savitzky-
Golay Filter in the SciPy Python package [5]. The
input parameters are as follows:

1. Window Length — half of the input video’s
FPS (frame per second)

2. Polynomial Order — 1

The final output from this step is the filtered pose
data for the top and bottom player with respect to
the original coordinates of the input video. From
this, we can proceed to calculate input features for
the shot classification models.

2.3.2.4 Feature Calculations

Given the coordinates of the detected joints of the
players, it is possible to calculate some additional
features that can be used to provide more user-
friendly output and serve as a more powerful input
for shot classification models.

Joint Angles

The coordinates of detected joints are represented
as 2D vectors. Therefore, to calculate the angle
between joints, the dot product formula must be
used, as shown in Fig. 8.

u-v

6= ———
20 Tl vl

Figure 8 — Dot Product Formula

This calculation is performed for all combinations of
detected joints. The final angle reported is the
minimum of the two combinations. Additionally, for
the ball and socket joints (shoulders and hips), the
abduction and horizontal abduction angles are
calculated. The abduction angle refers to the
shoulder angle between the elbow and the hip,
while the horizontal abduction angle refers to the
angle between the elbow and the opposite
shoulder.

Euclidian Distances

Using the formula in Fig.9, the Euclidian Distances
between detected joints can be determined.

d(x,y) =

Figure 9 — Euclidian Distance Formula

However, variations in camera configuration can
result in a distortion of the raw distances between
joints. To account for these, min-max normalization
is carried out to standardize the distances between
joints in each frame to a range of 0 to 1. This
mitigates the effect of variations in camera setups.
The normalized value is derived using the formula
in Fig. 10.

X - Xmin

r

Xmax - Xmin
Figure 10 — Min-Max Normalization Formula

This ensures that all distances are within the same
range, allowing for the comparison of data points
across frames. However, a drawback of this
approach is that it compresses the values into a
square "box," which can distort the shape of the
detected pose, leading to the loss of information.
Fig. 11 depicts a side-by-side comparison of the
original video frame and the distorted image after
normalization.

Figure 11 — Before-and-After Comparison of Min-
Max Normalization

To address this distortion, it is necessary to use
another normalization approach that considers the
aspect ratio of the input video. The aspect ratio is
defined as the ratio of the width to the height of the
input frame. Multiplying the x-axis coordinates by
the aspect ratio before normalization ensures that
the proportional relationship between width and
height is maintained. This step is crucial because it
aligns the x-coordinates with the scale of the y-
coordinates, preserving the true geometric shape of
the player's pose. The outputs from this stage are
CSV files for the bottom and top players, containing
the following information for all keypoints listed in
Table 1:

1. Detected x and y coordinates.
2. Likelihood of detection.

3. Coordinates of the centre of mass of
players.

Joint angles of keypoints.

Normalized distances between from each
keypoint to the other keypoints.

For the purposes of model training, a truncated
version of this dataset is created and saved. As
different input videos can contain different camera
angles, some data points obtained from our pipeline
are prone to higher deviations. To prevent our
classification models from learning incorrect
information, we chose to retain features that are
resistant to these deviations. Therefore, only the
calculated angles and normalized aspect ratio
distance are used training our shot classification
models.

3 SHOT CLASSIFICATION MODELS

To achieve the task of automatically classifying the
type of shot taken by a player, it is necessary to train
a classification model that takes in a sequence of
frames just before and after a player hits a
shuttlecock. It is also necessary to construct a
training dataset consisting of different shots taken
by a player and their movements as recorded by our
pipeline, as detailed in Section 2. This section aims

to elaborate on our training data collection process,
model training methodology and explain our
findings.

3.1 TRAINING DATASET

To construct our training dataset, badminton match
videos were sourced from YouTube, ensuring a
diverse range of gameplay scenarios and player
actions (IRB-2023-442). These videos were then
downloaded and systematically processed using
the data processing pipeline detailed in Section 2.
After extracting the positional data, manual
annotation of videos was performed to mark the
frames during which player actions were carried
out. To streamline the annotation process, we
utilized the Computer Vision Annotation Tool
(CVAT) [6]. Currently, the data from six quarter-
final, semi-final and final matches of the YONEX
French Open 2023 have been processed and
annotated. However, this annotation process is still
ongoing as we look to construct an extensive
training data set consisting of a diverse range of
camera angles and players.

3.1.1 Annotation Tags

Table 3 lists the annotation tags that are grouped
by category.

Table 3 Annotation Tags Grouped by Category

Category Values

Player Top Player, Bottom Player

Grip Forehand, Backhand, Overhead

Shot Lob, Drop, Smash, Drive, Block, Net,

Type Lift, Tap, Push, Serve Low, Serve
High

Shot Straight, Middle, Cross

Direction

Outcome | Winner, Forced Error, Unforced
Error

For every shot taken in the input video, the
corresponding frame is marked, and the following
tags applied:
1. Player — to identify if the top or bottom
player played the shot

2. Grip — to identify the type of grip used
during the shot

3. Shot Type —

a. Lob - refers to a shot played from the
player's back court to the opponent’s
back court.

b. Drop - refers to a shot played from the
player's back court to the opponent’s
front court, low and close to the net.

c. Smash - refers to a shot that is mostly
played from the player’s back courtin a
fast, attacking manner.

d. Drive - refers to a flat shot that can be
played from the player's mid-court or
backcourt. It can be a straight shot,
cross-court shot, or even to the body of
the opponent.

e. Block - refers to a shot mostly played
when receiving a smash from the
opponent.

f. Net - refers to a shot played from the
player's front court to the opponent’s
front court, near the net.

g. Lift — refers to a shot played from the
player's front court to the opponent’s
back court, high in the air.

h. Tap - refers to an attacking shot played
at the player’s front court.

i. Push - refers to a flat lift shot played
from the front of the player’s court to the
middle or back court of the opponent.

j- Serve Low - refers to the shot played
by the player at the beginning of a
possession, from the player's front
court to the opponent’s front court

k. Serve High - refers to the shot played
by the player at the beginning of a
possession, from the player's front
court to the opponent’s back court

4. Shot Direction —

a. Straight — If the shuttle does not cross
the middle line when moving from the
player’s court to the opponent’s court, it
is considered a straight shot.

b. Middle - If the shuttle goes toward the
center zone of the court, it is
considered a middle shot.

c. Cross — When the shuttle crosses the
vertical middle line of the court, it is
considered a cross shot.

At the beginning of a sequence, the player playing
the serve and the type of serve is marked. At the
end of a sequence, one of the following tags is
applied:

1. Winner — When the opponent misses the
shuttle, or the shuttle touches the ground
before the opponent has a chance to play
it.

2. Forced Error — A point lost by the
opponent as a direct result of a well-
executed or strategically placed shot, which
compels the opponent into making a
mistake, such as hitting the shuttle into the
net or out of bounds.

3. Unforced Error — A point lost due to the
player's own mistake, typically occurring in
the absence of significant pressure from
the opponent.

After the annotation process has been completed
for a match, the tags are merged into the complete
and truncated datasets generated from our data
collection pipeline. Additionally, a ‘padding’ size of
frames half the frame rate of input video is applied
for the frames before and after the shot was taken.
In the context of this training dataset, the training
videos were 30 frames per second (FPS) and thus
12 frames were padded. For example, if a serve
was taken at the 100" frame of a video, the
sequence from frames from frame 88 to 112 are
marked as a serve. This allows us to easily obtain
and process the movements made by the player
before and after the shot was taken. This data is
stored in CSV files and serves as the input data for
the shot classification models.

3.2 MODEL TRAINING
3.2.1 Data Loading

The CSV files from the data annotation process are
loaded and processed using the Pandas Python
package [7]. The following is the data loading
methodology:

1. Remove rows containing values of -999.
These are used to mark frames that have
been filtered with feature masking.

2. Extract the columns containing pose angles
and normalized distances.

3. Using the Pandas package, mark the row
numbers containing the shot types for
classification.

4. Group consecutive frames corresponding
to each shot type as a sequence.

5. Track the maximum sequence length
across all files and apply padding if
necessary to ensure a uniform input to the
model.

6. Map the shot types for classification to
integer values.

Data loading and model training is handled by the
PyTorch Python package [8]. A custom class is
implemented to facilitate data loading and to
enable batch processing.

3.2.1 Grip Classification Model Training

To reduce the complexity of the initial exploration of
the model training methodology, we chose to focus
on an annotation category that contains a fewer
number of classes. The “Grip” category from Table
3 meets this criterion and hence Forehand (FH),

Backhand (BH), and Overhead (OH) were used as
the target labels for shot classification.

3.2.1.1 Model Architectures

The performance of three different model
architectures were tested:

1. Recurrent Neural Networks (RNNs),

2. Long Short-Term Memory networks
(LSTMs), and

3. Convolutional Neural Networks (Conv2D)

These model architectures were chosen due to their
capabilities in handling sequential and spatial data.
RNNs excel at capturing temporal dependencies
within sequential data, making them suitable for
analysing the frame-by-frame progression of player
movements. LSTMs were selected as they are
better able to capture long-term dependencies in
temporal data. Lastly, Conv2Ds were selected due
to the model architecture’s strengths in spatial
feature extraction. By comparing these
architectures, we aim to determine which model
best balances the temporal and spatial aspects of
the input data, providing the most accurate shot
classification.

3.2.1.2 Model Training Parameters

The following parameters were constant across the
training of the three models:

1. Number of Epochs — 10
2. Learning Rate — 0.001
3. Train/ Test Split — 60:40
4. Loss Function — Cross Entropy Loss
5. Optimizer — Adam Optimizer
For each architecture, three models were trained:
1. Model using the Top Player Data
2. Model using the Bottom Player Data
3. Model using the Combined Dataset

This decision was made to evaluate if segregating
the dataset for the top and bottom player provides
better results. The following section details the and
statistical measures calculated for the test set of
each model architecture.

3.2.1.2.1 Model Results
Bottom Player Data

Table 4 F1 Score for Models on Bottom Player
Test Data Set

F1 Score | RNN LSTM
Class
FH 0.689 0.831 0.940

Conv2D

OH 0.739 0.862 0.954

BH 0.834 0.933 0.948

Table 5 Precision Scores for Models on Bottom
Player Test Data Set

Precision | RNN LSTM Conv2D

Class

FH 0.717 0.835 0.946

OH 0.734 0.857 0.957

BH 0.752 0.933 0.922

Table 6 Recall Scores

for Models on Bottom
Player Test Data Set

Recall RNN LSTM Conv2D
Class

FH 0.664 0.826 0.933
OH 0.744 0.866 0.951
BH 0.936 0.933 0.975

Top Player Data

Table 8 F1 Score for Models on Top Player Test

Data Set

F1 Score | RNN LSTM Conv2D
Class
FH 0.788 0.889 0.900
OH 0.653 0.889 0.881
BH 0.810 0.893 0.902

Table 9 Precision Scores for Models on Top

Player Test Data Set

Precision | RNN LSTM Conv2D
Class
FH 0.885 0.908 0.947
OH 0.538 0.856 0.810
BH 0.873 0.832 0.948

Test Data Set

Table 10 Recall Scores for Models on Top Player

Recall RNN LSTM Conv2D
Class

FH 0.710 0.871 0.857
OH 0.833 0.925 0.965
BH 0.756 0.858 0.860

Combined Player Data

Table 11 F1 Scores for Models on Combined
Player Test Data Set

F1 Score | RNN LSTM Conv2D
Class

FH 0.708 0.809 0.915
OH 0.767 0.767 0.932
BH 0.877 0.900 0.934

Table 12 Precision Scores for Models on
Combined Player Test Data Set

Precision | RNN LSTM Conv2D
Class

FH 0.590 0.933 0.867
OH 0.822 0.659 0.982
BH 0.831 0.850 0.940

Table 13 Recall Scores for Models on Combined
Player Test Data Set

Recall RNN LSTM Conv2D
Class

FH 0.884 0.715 0.968
OH 0.656 0.917 0.887
BH 0.928 0.957 0.928

3.2.1.3 Observations

Tables 4-13 reveal several insights into model
performance on the shot classification task.

Across bottom, top, and combined player data, the
Conv2D model consistently yields the highest F1
scores, with particularly strong performance on FH
and OH shots. For instance, on the bottom player
dataset, Conv2D achieves F1 scores of 0.94 on FH,
0.954 on OH, and 0.948 on BH, significantly
outperforming both RNN and LSTM. This suggests
that Conv2D is more effective at capturing the
spatiotemporal patterns inherent in the sequence
data, possibly due to its ability to preserve and learn
local spatial features within the input frames. We
therefore recommend adopting this model
architecture for subsequent studies.

Additionally, all three model architectures were
effective in accurately classifying OH shots. For
example, on the combined dataset, even the RNN,
which performs worst overall, achieves a relatively
high OH F1 score of 0.767. This suggests that OH
shots exhibit distinctive pose features that are
easier for models to learn, while FH and BH share
overlapping kinematic signatures that lead to
greater misclassification.

There is also a notable difference in performance
between separate models for top and bottom
players against a combined model. While the

Conv2D model maintained high accuracy even in
the combined setting, the RNN and LSTM
architectures generally experienced performance
degradation when trained on the merged dataset.
This trend indicates that the positional context of the
player introduces variability in pose sequences,
which can hinder model generalization. By training
separate models for each player position, this
variability is minimized, allowing the models to
focus more effectively on learning position-
dependent shot patterns.

4 FUTURE DIRECTIONS

This study has identified several avenues for future
research and improvements to our current pipeline.

4.1 AUTOMATED COURT CORNER
DETECTION

Currently, user interaction is needed to identify the
court corners during the initial data processing
steps. This design choice was made due to the time
constraints of this study. However, this can be
burdensome for users who wish to process multiple
videos. Therefore, future iterations of this pipeline
can develop and implement keypoint detection
models that automatically detect the location of
court features.

Dynamic detection of court features can also enable
frame-wise calculation of homography matrices.
This is valuable in scenarios where the broadcast
camera is panning between different parts of the
court. By continuously updating the homography
matrix to maintain a consistent top-down or
standardized court view, the system can perform
player tracking and spatial localization across
varying perspectives. This significantly improves
the robustness, scalability, and automation level of
the video analysis pipeline, particularly for use in
live match analysis or large-scale datasets with
non-static cameras.

4.2 TRAINING SHOT CLASSIFICATION
MODELS

The results from our grip classification models show
that the Conv2D architecture performs extremely
well for action recognition on our input dataset.
Future development of this pipeline should hence
focus on training similar classification models for
the other tags in Table 3, along with exploring
methodologies to improve the performance of
existing models.

4.3 SHUTTLECOCK TRACKING

We propose the implementation of TrackNetV3 [9]
to enhance the precision of shot detection in
badminton matches. TrackNetV3 offers the
capability to track the location of a shuttlecock in a
video. From this, we can determine the trajectory
and velocity of the shuttlecock throughout a game.
Furthermore, by analyzing the changes in
shuttlecock velocity, we can obtain the exact frame
when a shot is taken. This in turn enables us to use
our trained shot classification models to infer the
type of shot taken by a player. Although the current
project timeline did not allow for the exploration and
implementation of TrackNetV3, it represents a
promising direction for future research to refine and
enhance the shot detection and classification
process in badminton video analysis.

5 CONCLUSION

In summary, this work lays the groundwork for a
scalable, intelligent badminton video analysis
system. The project began with the creation of a
data-processing pipeline. This included video pre-
processing, isolating the court area, filtering frames
using masking techniques, and using advanced
pose detection models. Post-processing steps
involved perspective transformation, segregation of
outputs, assignment of coordinates to players, and
feature calculations.

During the training of the grip classification model,
we collated and annotated a training dataset and
explored the performance of various model
architectures on three different datasets. Our
findings indicate that the Conv2D model
architecture outperform LSTM and RNN, and
training separate models for top and bottom players
significantly reduces classification errors.

Building on these insights, we propose several
avenues for future improvement. Automating the
court corner detection step using keypoint-based
models can enhance the usability and scalability of
the system. Additionally, expanding the
classification pipeline to support other shot
attributes would significantly broaden the system’s
analytical capabilities. Finally, incorporating
shuttlecock tracking using TrackNetV3 will provide
additional data points to improve the quality of
results.

6 REFERENCES

[1] M. Carey, “How the growth of wearable
technology is transforming football - The
Athletic,” The Athletic, 2023.

[2] G. Bradski, “The OpenCV Library,” Dr.
Dobb’s J. Softw. Tools, 2000.

3]

[4]

[5]

[6]

[7]

(8]

[9]

Z. Cao, G. Hidalgo Martinez, T. Simon, S.
Wei, and Y. A. Sheikh, “OpenPose:
Realtime Multi-Person 2D Pose Estimation
using Part Affinity Fields,” IEEE Trans.
Pattern Anal. Mach. Intell., 2019.

D. Pagnon, “Sports2D - Angles from video,”
GitHub repository. GitHub, 2023, doi:
10.5281/zenodo.7903963.

P. Virtanen et al., “{SciPy} 1.0:
Fundamental Algorithms for Scientific
Computing in Python,” Nat. Methods, vol.
17, pp. 261-272, 2020, doi:
10.1038/s41592-019-0686-2.

CVAT.ai Corporation, “Computer Vision
Annotation Tool (CVAT).” Nov. 2023,
[Online]. Available: https://github.com/cvat-
ai/cvat.

W. McKinney, “{D}ata {S}tructures for
{SHatistical {C}omputing in {P}ython,” in
{P}roceedings of the 9th {P}ython in
{S}cience {C}onference, 2010, pp. 56-61,
doi: 10.25080/Majora-92bf1922-00a.

J. Ansel et al., “PyTorch 2: Faster Machine
Learning Through Dynamic Python
Bytecode Transformation and Graph
Compilation,” Apr. 2024, doi:
10.1145/3620665.3640366.

Y. J. Chenand Y. S. Wang, “TrackNetV3:
Enhancing ShuttleCock Tracking with
Augmentations and Trajectory
Rectification,” Proc. 5th ACM Int. Conf.
Multimed. Asia, MMAsia 2023, Dec. 2023,
doi: 10.1145/3595916.3626370.

